Equilibrium Optimizer and Slime Mould Algorithm with Variable Neighborhood Search for Job Shop Scheduling Problem

Author:

Wei Yuanfei,Othman ZalindaORCID,Daud Kauthar MohdORCID,Yin ShihongORCID,Luo Qifang,Zhou Yongquan

Abstract

Job Shop Scheduling Problem (JSSP) is a well-known NP-hard combinatorial optimization problem. In recent years, many scholars have proposed various metaheuristic algorithms to solve JSSP, playing an important role in solving small-scale JSSP. However, when the size of the problem increases, the algorithms usually take too much time to converge. In this paper, we propose a hybrid algorithm, namely EOSMA, which mixes the update strategy of Equilibrium Optimizer (EO) into Slime Mould Algorithm (SMA), adding Centroid Opposition-based Computation (COBC) in some iterations. The hybridization of EO with SMA makes a better balance between exploration and exploitation. The addition of COBC strengthens the exploration and exploitation, increases the diversity of the population, improves the convergence speed and convergence accuracy, and avoids falling into local optimum. In order to solve discrete problems efficiently, a Sort-Order-Index (SOI)-based coding method is proposed. In order to solve JSSP more efficiently, a neighbor search strategy based on a two-point exchange is added to the iterative process of EOSMA to improve the exploitation capability of EOSMA to solve JSSP. Then, it is utilized to solve 82 JSSP benchmark instances; its performance is evaluated compared to that of EO, Marine Predators Algorithm (MPA), Aquila Optimizer (AO), Bald Eagle Search (BES), and SMA. The experimental results and statistical analysis show that the proposed EOSMA outperforms other competing algorithms.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3