Machine Learning Combined with Restriction Enzyme Mining Assists in the Design of Multi-Point Mutagenic Primers

Author:

Cheng Yu-HueiORCID,Chuang Li-YehORCID,Yang Cheng-Hong

Abstract

The polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) experiment has the characteristics of low-cost, rapidity, simplicity, convenience, high sensitivity and high specificity; thus, many small and medium laboratories use it to perform all kinds of single nucleotide polymorphisms (SNPs) genotyping works, and as a molecular biotechnology for disease-related analysis. However, many single nucleotide polymorphisms lack available restriction enzymes to distinguish the specific genotypes on a target SNP, and that causes the PCR-RFLP assay which is unavailable to be called mismatch PCR-RFLP. In order to completely solve the problem of mismatch PCR-RFLP, we have created a teaching–learning-based optimization (TLBO) multi-point mutagenic primer design algorithm which, combined with REHUNT, provides a complete and specific restriction enzyme mining solution. The proposed method not only introduces several search strategies suitable for multi-point mutagenesis primers, but also enhances the reliability of mutagenic primer design. In addition, this study is also designed for more complex SNP structures (with multiple dNTPs and insertion and deletion) to provide specific solutions for SNP diversity. We tested against fifteen mismatch PCR-RFLP SNPs in the human SLC6A4 gene on the NCBI dbSNP database as experimental templates. The experimental results indicate that the proposed method is helpful for providing the multi-point mutagenic primers that meet the constrain conditions of PCR experiments.

Funder

Ministry of Science and Technoloyg of Taiwan

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference19 articles.

1. Improved method for PCR-mediated site-directed mutagenesis;Nucleic Acids Res.,1994

2. Specific primer design for the polymerase chain reaction;Biotechnol. Lett.,2013

3. Specific PCR product primer design using memetic algorithm;Biotechnol. Prog.,2009

4. HTP-OligoDesigner: An online primer design tool for high-throughput gene cloning and site-directed mutagenesis;J. Comput. Biol.,2016

5. Golden Mutagenesis: An efficient multi-site-saturation mutagenesis approach by Golden Gate cloning with automated primer design;Sci. Rep.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3