FAS-UNet: A Novel FAS-Driven UNet to Learn Variational Image Segmentation

Author:

Zhu Hui,Shu Shi,Zhang Jianping

Abstract

Solving variational image segmentation problems with hidden physics is often expensive and requires different algorithms and manually tuned model parameters. The deep learning methods based on the UNet structure have obtained outstanding performances in many different medical image segmentation tasks, but designing such networks requires many parameters and training data, which are not always available for practical problems. In this paper, inspired by the traditional multiphase convexity Mumford–Shah variational model and full approximation scheme (FAS) solving the nonlinear systems, we propose a novel variational-model-informed network (FAS-UNet), which exploits the model and algorithm priors to extract the multiscale features. The proposed model-informed network integrates image data and mathematical models and implements them through learning a few convolution kernels. Based on the variational theory and FAS algorithm, we first design a feature extraction sub-network (FAS-Solution module) to solve the model-driven nonlinear systems, where a skip-connection is employed to fuse the multiscale features. Secondly, we further design a convolutional block to fuse the extracted features from the previous stage, resulting in the final segmentation possibility. Experimental results on three different medical image segmentation tasks show that the proposed FAS-UNet is very competitive with other state-of-the-art methods in the qualitative, quantitative, and model complexity evaluations. Moreover, it may also be possible to train specialized network architectures that automatically satisfy some of the mathematical and physical laws in other image problems for better accuracy, faster training, and improved generalization.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference55 articles.

1. Image Segmentation Using Deep Learning: A Survey;Minaee;IEEE Trans. Pattern Anal. Mach. Intell.,2022

2. Medical Image Registration Using Deep Neural Networks: A Comprehensive Review;Boveiri;Comput. Electr. Eng.,2020

3. A Review of the Application of Deep Learning in Medical Image Classification and Segmentation;Cai;Ann. Transl. Med.,2020

4. Deep Learning for Cardiac Image Segmentation: A Review;Chen;Front. Cardiovasc. Med.,2020

5. A Survey on Deep Learning in Medical Image Analysis;Litjens;Med. Image Anal.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3