Performance of Spring and Summer-Sown Maize under Different Irrigation Strategies in Pakistan

Author:

Khan Abdul Ghaffar,Imran MuhammadORCID,Khan Anwar-ul-Hassan,Fares AliORCID,Šimůnek JiříORCID,Ul-Haq Tanveer,Alsahli Abdulaziz AbdullahORCID,Alyemeni Mohammed Nasser,Ali ShafaqatORCID

Abstract

Pakistan is facing severe water shortages, so using the available water efficiently is essential for maximizing crop production. This can be achieved through efficient irrigation practices. Field studies were carried out to determine the dynamics of soil water and the efficiency of water utilization for maize grown under five irrigation techniques (flood-irrigated flatbed, furrow-irrigated ridge, furrow-irrigated raised bed, furrow-irrigated raised bed with plastic mulch, and sprinkler-irrigated flatbed). Spring and summer maize was grown for two years. The Irrigation Management System (IManSys) was used to estimate the irrigation requirements, evapotranspiration, and other water balance components for this study’s different experimental treatments based on site-specific crop, soil, and weather parameters. The results showed that the flood irrigation flatbed (FIF) treatment produced the highest evapotranspiration, leaf area index (LAI), and biomass yield compared to other treatments. However, this treatment did not produce the highest grain yield and had the lowest water use efficiency (WUE) and irrigation water use efficiency (WUEi) compared to the furrow-irrigated raised-bed treatment. The furrow-irrigated raised bed with plastic mulch (FIRBM) treatment improved grain yield, WUE, WUEi, and harvest index compared to the flood irrigation flatbed (FIF) treatment. The results showed a strong correlation between measured and estimated net irrigation requirements and evapotranspiration, with high r2 values (0.93, 0.99, 0.98, and 0.98) for the spring- and summer-sown maize. It was concluded that the FIRBM treatments improved the grain yield, WUE, and WUEi, which ultimately enhanced sustainable crop production. The growing of summer-sown maize in Pakistan has the potential for sustainable maize production under the semiarid and arid climate.

Funder

King Saud University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference47 articles.

1. Conflict Prevention and Resolution in Water Systems,2002

2. World Water Demand and Supply, 1990 to 2025: Scenarios and Issues. Research Report 19;Seckler,1998

3. An Approach of Agricultural Courses for Soil Conservation Based on Crop Soil Suitability Using Geomatics

4. Progress on Water Use Efficiency—Global Baseline for SDG 6 Indicator 6.4.1 2018,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3