Recent Development of Non-Contact Multi-Target Vital Sign Detection and Location Tracking Based on Metamaterial Leaky Wave Antennas

Author:

Yuan Yichao,Wu Chung-Tse MichaelORCID

Abstract

Microwave radar sensors have been developed for non-contact monitoring of the health condition and location of targets, which will cause minimal discomfort and eliminate sanitation issues, especially in a pandemic situation. To this end, several radar sensor architectures and algorithms have been proposed to detect multiple targets at different locations. Traditionally, beamforming techniques incorporating phase shifters or mechanical rotors are utilized, which is relatively complex and costly. On the other hand, metamaterial (MTM) leaky wave antennas (LWAs) have a unique property of launching waves of different spectral components in different directions. This feature can be utilized to detect multiple targets at different locations to obtain their healthcare and location information accurately, without complex structure and high cost. To this end, this paper reviews the recent development of MTM LWA-based radar sensor architectures for vital sign detection and location tracking. The experimental results demonstrate the effectiveness of MTM vital sign radar compared with different radar sensor architectures.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference68 articles.

1. Noncontact Accurate Measurement of Cardiopulmonary Activity Using a Compact Quadrature Doppler Radar Sensor

2. Feature-based correlation and topological similarity for interbeat interval estimation using ultrawideband radar;Sakamoto;IEEE Trans. Biomed. Eng.,2016

3. High-Accuracy Heart Rate Variability Monitoring Using Doppler Radar Based on Gaussian Pulse Train Modeling and FTPR Algorithm

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3