DriveLLaVA: Human-Level Behavior Decisions via Vision Language Model

Author:

Zhao Rui1ORCID,Yuan Qirui1,Li Jinyu1ORCID,Fan Yuze1ORCID,Li Yun2ORCID,Gao Fei13ORCID

Affiliation:

1. College of Automotive Engineering, Jilin University, Changchun 130025, China

2. Graduate School of Information and Science Technology, The University of Tokyo, Tokyo 113-8654, Japan

3. National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130025, China

Abstract

Human-level driving is the ultimate goal of autonomous driving. As the top-level decision-making aspect of autonomous driving, behavior decision establishes short-term driving behavior strategies by evaluating road structures, adhering to traffic rules, and analyzing the intentions of other traffic participants. Existing behavior decisions are primarily implemented based on rule-based methods, exhibiting insufficient generalization capabilities when faced with new and unseen driving scenarios. In this paper, we propose a novel behavior decision method that leverages the inherent generalization and commonsense reasoning abilities of visual language models (VLMs) to learn and simulate the behavior decision process in human driving. We constructed a novel instruction-following dataset containing a large number of image–text instructions paired with corresponding driving behavior labels, to support the learning of the Drive Large Language and Vision Assistant (DriveLLaVA) and enhance the transparency and interpretability of the entire decision process. DriveLLaVA is fine-tuned on this dataset using the Low-Rank Adaptation (LoRA) approach, which efficiently optimizes the model parameter count and significantly reduces training costs. We conducted extensive experiments on a large-scale instruction-following dataset, and compared with state-of-the-art methods, DriveLLaVA demonstrated excellent behavior decision performance. DriveLLaVA is capable of handling various complex driving scenarios, showing strong robustness and generalization abilities.

Funder

National Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3