A Stackable Triboelectric Nanogenerator for Wave-Driven Marine Buoys

Author:

Wang Hao,Zhu Chuanqing,Wang Weichen,Xu Ruijiang,Chen Pengfei,Du TailiORCID,Xue Tingxi,Wang Zhaoyang,Xu MinyiORCID

Abstract

Marine distributed devices are essential infrastructure for exploring and utilizing the ocean. As the most common carrier of these devices, floating and submerged buoys are subject to a bottleneck of power supply. Recent progress in nanogenerators could convert the high-entropy marine kinetic energy (e.g., wave) robustly, which may form an in-situ power solution to marine distributed devices. This study is devoted to develop a stackable triboelectric nanogenerator (S-TENG), while each layer of it is made into multiple channels carrying PTFE balls in between Aluminum electrodes. In the experiments based on forced motion, the peak power density of the S-TENG reaches 49 W/m3, about 29% promotion from our previous benchmark. The S-TENG has also become less vulnerable to directional variation of the excitation, making its integration on various platforms more flexible in real conditions. In practice, the S-TENG has demonstrated its capability of powering LEDs as well as various sensors measuring salinity, temperature and acidity, which means the S-TENG could self-power many compact marine buoys.

Funder

National Natural Science Foundation of China

National Key R&D Project from Minister of Science and Technology of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3