Laser-Induced Morphological and Structural Changes of Cesium Lead Bromide Nanocrystals

Author:

Kostopoulou AthanasiaORCID,Brintakis KonstantinosORCID,Sygletou MariaORCID,Savva Kyriaki,Livakas Nikolaos,Pantelaiou Michaila Akathi,Dang Zhiya,Lappas AlexandrosORCID,Manna Liberato,Stratakis EmmanuelORCID

Abstract

Metal halide perovskite nanocrystals, an emerging class of materials for advanced photonic and optoelectronic applications, are mainly fabricated with colloidal chemistry routes. On the quest for new properties according to application needs, new perovskite systems of various morphologies and levels of doping and alloying have been developed, often also involving post-synthesis reactions. Recently, laser irradiation in liquids has been utilized as a fast method to synthesize or transform materials and interesting laser-induced transformations on nanocrystals were induced. These studies in general have been limited to small nanocrystals (~15 nm). In the case of halide perovskites, fragmentation or anion exchange have been observed in such laser-based processes, but no crystal structure transformations were actually observed or deliberately studied. Nanocrystals are more sensitive to light exposure compared to the corresponding bulk crystals. Additional factors, such as size, morphology, the presence of impurities, and others, can intricately affect the photon absorption and heat dissipation in nanocrystal suspensions during laser irradiation. All these factors can play an important role in the final morphologies and in the time required for these transformations to unfold. In the present work, we have employed a 513 nm femtosecond (fs) laser to induce different transformations in large nanocrystals, in which two phases coexist in the same particle (Cs4PbBr6/CsPbBr3 nanohexagons of ~100 nm), dispersed in dichlorobenzene. These transformations include: (i) the exfoliation of the primary nanohexagons and partial anion exchange; (ii) fragmentation in smaller nanocubes and partial anion exchange; (iii) side-by-side-oriented attachment, fusion, and formation of nanoplatelets and complete anion exchange; (iv) side-by-side attachment, fusion, and formation of nanosheets. Partial or complete Br-Cl anion exchange in the above transformations was triggered by the partial degradation of dichlorobenzene. In addition to the detailed analysis of the various nanocrystal morphologies observed in the various transformations, the structure–photoluminescence relationships for the different samples were analyzed and discussed.

Funder

General Secretariat for Research and Technology

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3