Steady Squeezing Flow of Magnetohydrodynamics Hybrid Nanofluid Flow Comprising Carbon Nanotube-Ferrous Oxide/Water with Suction/Injection Effect

Author:

Khan Muhammad Sohail,Mei Sun,Shabnam Shabnam,Ali Shah NehadORCID,Chung Jae DongORCID,Khan AamirORCID,Shah Said Anwar

Abstract

The main purpose of the current article is to scrutinize the flow of hybrid nanoliquid (ferrous oxide water and carbon nanotubes) (CNTs + Fe3O4/H2O) in two parallel plates under variable magnetic fields with wall suction/injection. The flow is assumed to be laminar and steady. Under a changeable magnetic field, the flow of a hybrid nanofluid containing nanoparticles Fe3O4 and carbon nanotubes are investigated for mass and heat transmission enhancements. The governing equations of the proposed hybrid nanoliquid model are formulated through highly nonlinear partial differential equations (PDEs) including momentum equation, energy equation, and the magnetic field equation. The proposed model was further reduced to nonlinear ordinary differential equations (ODEs) through similarity transformation. A rigorous numerical scheme in MATLAB known as the parametric continuation method (PCM) has been used for the solution of the reduced form of the proposed method. The numerical outcomes obtained from the solution of the model such as velocity profile, temperature profile, and variable magnetic field are displayed quantitatively by various graphs and tables. In addition, the impact of various emerging parameters of the hybrid nanofluid flow is analyzed regarding flow properties such as variable magnetic field, velocity profile, temperature profile, and nanomaterials volume fraction. The influence of skin friction and Nusselt number are also observed for the flow properties. These types of hybrid nanofluids (CNTs + Fe3O4/H2O) are frequently used in various medical applications. For the validity of the numerical scheme, the proposed model has been solved by another numerical scheme (BVP4C) in MATLAB.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3