Concentrically Encapsulated Dual-Enzyme Capsules for Synergistic Metabolic Disorder Redressing and Cytotoxic Intermediates Scavenging

Author:

Deng Chao,Li Xianghai,Jin Qianru,Yi Deliang

Abstract

Enzyme therapy has important implications for the treatment of metabolic disorders and biological detoxification. It remains challenging to prepare enzymatic nanoreactors with high therapeutic efficiency and low emission of cytotoxic reaction intermediates. Here, we propose a novel strategy for the preparation of enzymes-loaded polypeptide microcapsules (EPM) with concentrically encapsulated enzymes to achieve higher cascade reaction rates and minimal emission of cytotoxic intermediates. Mesoporous silica spheres (MSS) are used as a highly porous matrix to efficiently load a therapeutic enzyme (glucose oxidase, GOx), and a layer-by-layer (LbL) assembly strategy is employed to assemble the scavenging enzyme (catalase) and polyelectrolyte multilayers on the MSS surface. After removal of the MSS, a concentrically encapsulated EPM is obtained with the therapeutic enzyme encapsulated inside the capsule, and the scavenging enzyme immobilized in the polypeptide multilayer shell. Performance of the concentrically encapsulated GOx-catalase capsules is investigated for synergistic glucose metabolism disturbance correction and cytotoxic intermediate H2O2 clearance. The results show that the EPM can simultaneously achieve 99% H2O2 clearance and doubled glucose consumption rate. This strategy can be extended to the preparation of other dual- or multi-enzyme therapeutic nanoreactors, showing great promise in the treatment of metabolic disorders.

Funder

the Natural Science Foundation of Zhejiang Province

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Silica‐based Nanoparticles for Enzyme Immobilization and Delivery;Chemistry – An Asian Journal;2022-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3