MOFSocialNet: Exploiting Metal-Organic Framework Relationships via Social Network Analysis

Author:

Jalali MehrdadORCID,Tsotsalas ManuelORCID,Wöll ChristofORCID

Abstract

The number of metal-organic frameworks (MOF) as well as the number of applications of this material are growing rapidly. With the number of characterized compounds exceeding 100,000, manual sorting becomes impossible. At the same time, the increasing computer power and established use of automated machine learning approaches makes data science tools available, that provide an overview of the MOF chemical space and support the selection of suitable MOFs for a desired application. Among the different data science tools, graph theory approaches, where data generated from numerous real-world applications is represented as a graph (network) of interconnected objects, has been widely used in a variety of scientific fields such as social sciences, health informatics, biological sciences, agricultural sciences and economics. We describe the application of a particular graph theory approach known as social network analysis to MOF materials and highlight the importance of community (group) detection and graph node centrality. In this first application of the social network analysis approach to MOF chemical space, we created MOFSocialNet. This social network is based on the geometrical descriptors of MOFs available in the CoRE-MOFs database. MOFSocialNet can discover communities with similar MOFs structures and identify the most representative MOFs within a given community. In addition, analysis of MOFSocialNet using social network analysis methods can predict MOF properties more accurately than conventional ML tools. The latter advantage is demonstrated for the prediction of gas storage properties, the most important property of these porous reticular networks.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3