Preparation and Drug-Loading Properties of Amphoteric Cassava Starch Nanoparticles

Author:

Xie Xinling,Zhang Youquan,Zhu Yong,Lan Yiling

Abstract

Based on the characteristics of charge reversal around the isoelectric point (pI) of amphoteric starch-containing anionic and cationic groups, amphoteric cassava starch nanoparticles (CA-CANPs) are prepared by a W/O microemulsion crosslinking method using (3-chloro-2-hydroxypropyl) trimethyl ammonium chloride as a cationic reagent and POCl3 as an anionic reagent, and the effects of preparation conditions on the particle size of the CA-CANPs are studied in detail in the present study. CA-CANPs with a smooth surface and an average diameter of 252 nm are successfully prepared at the following optimised conditions: a crosslinking agent amount of 15 wt%, an aqueous starch concentration of 6.0 wt%, an oil–water ratio of 10:1, a total surfactant amount of 0.20 g·mL−1, and a CHPTAC amount of 4.05 wt%. The pH-responsive value of the CA-CANPs can be regulated by adjusting the nitrogen–phosphorus molar ratio in the CA-CANPs. By using CA-CANPs with a pI of 6.89 as drug carriers and the paclitaxel (PTX) as a model drug, the maximum loading rate of 36.14 mg·g−1 is achieved, and the loading process is consistent with the Langmuir isotherm adsorption, with the calculated thermodynamic parameters of ΔH° = −37.91 kJ·mol−1, ΔS° = −10.96 J·mol−1·K−1 and ΔG° < 0. By testing the release rate in vitro, it is noted that the release rates of PTX in a neutral environment (37.6% after 96 h) and a slightly acidic environment (58.65% after 96 h) are quite different, suggesting that the CA-CANPs have the possibility of being a targeted controlled-release carrier with pH responsiveness for antitumor drugs.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3