Abstract
In this study, a tin monoselenide (SnSe)-based all-optical modulator is firstly demonstrated with high tuning efficiency, broad bandwidth, and fast response time. The SnSe nanoplates are deposited in the microfiber knot resonator (MKR) on MgF2 substrate and change its transmission spectra by the external laser irradiation. The SnSe nanoplates and the microfiber are fabricated using the liquid-phase exfoliation method and the heat-flame taper-drawing method, respectively. Due to the strong absorption and enhanced light–matter interaction of the SnSe nanoplates, the largest transmitted power tunability is approximately 0.29 dB/mW with the response time of less than 2 ms. The broad tuning bandwidth is confirmed by four external pump lights ranging from ultraviolet to near-infrared. The proposed SnSe-coated microfiber resonator holds promising potential for wide application in the fields of all-optical tuning and fiber sensors.
Funder
National Natural Science Foundation of China
NSAF
Open Fund of Guangdong Provincial Key Laboratory of Information Photonics Technology of Guangdong University of Technology
Natural Science Foundation of Guangdong Province
Subject
General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献