Abstract
The article presents results of an extended virtual experiment on graphene molecules performed using the virtual vibrational spectrometer HF Spectrodyn that exploits semiempirical Hartree–Fock approximation. The molecules are composed of flat graphene domains surrounded with heteroatom necklaces. Not existing individually, these molecules are met in practice as basic structure units of complex multilevel structure of all sp2 amorphous carbons. This circumstance deprives the solids’ in vitro spectroscopy of revealing the individual character of basic structural elements, and in silico spectrometry fills this shortcoming. The obtained virtual vibrational spectra allow for drawing first conclusions about the specific features of the vibrational dynamics of the necklaced graphene molecules, caused by spatial structure and packing of their graphene domains as well as by chemical composition of the relevant necklaces. As shown, IR absorption spectra of the molecules are strongly necklace dependent, once becoming a distinct spectral signature of the amorphous body origin. Otherwise, Raman spectra are a spectral mark of the graphene domain’s size and packing, thus disclosing the mystery of their universal D-G-band standard related to graphene-containing materials of various origins.
Subject
General Materials Science,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献