Electrical Transport in Iron Phosphate-Based Glass-(Ceramics): Insights into the Role of B2O3 and HfO2 from Model-Free Scaling Procedures

Author:

Bafti ArijetaORCID,Kubuki ShiroORCID,Ertap HüseyinORCID,Yüksek Mustafa,Karabulut Mevlüt,Moguš-Milanković AndreaORCID,Pavić LukaORCID

Abstract

In this work, we report the effect of the addition of modifiers and network formers on the polaronic transport in iron phosphate glasses (IPG) in two systems of HfO2–B2O3–Fe2O3–P2O5, to which up to 8 mol% boron and hafnium are added. The addition of oxides significantly changes the Fe2+/Fetotal ratio, thus directly affecting the polaron number density and consequently controlling DC conductivity trends for both series studied by impedance spectroscopy. Moreover, we found that short-range polaron dynamics are also under the influence of structural changes. Therefore, we have studied them in detail using model-free scaling procedures, Summerfield and Sidebottom scaling. An attempt to construct a super-master curve revealed that in addition to change in polaron number density, also the polaron hopping lengths change, and Sidebottom scaling yields a super-master curve. The spatial extent of the localized motion of polarons is correlated with polaron number density and two distinct regions are observed. A strong increase in the spatial extent of the polaron hopping jump could be related either to the structural changes due to the addition of HfO2 and B2O3 and their effects on the formation of polarons or to an inherent property of polaron transport in IP glasses with low polaron number density.

Funder

Croatian Science Foundation

Scientific and Technological Research Council of Turkey

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3