Quantitative Assessment of Impact of the Proposed Poyang Lake Hydraulic Project (China) on the Habitat Suitability of Migratory Birds

Author:

Yao Siyang,Li Xinyu,Liu Chenglin,Yuan Dongyang,Zhu Longhui,Ma Xiangyu,Yu Jie,Wang Gang,Kuang WeimingORCID

Abstract

Poyang Lake is the largest wintering habitat for migratory birds in Asia. In the last decade, the lake has experienced an early-occurring and prolonged dry season that has deteriorated the lake’s ecological status. To tackle this issue, the Chinese government has proposed the construction of the Poyang Lake Hydraulic Project (PLHP) to regulate water flow to the lake. However, its impact on migratory bird habitats is unknown. In this study, we simulated the habitat suitability for migratory birds in Poyang Lake during wet and dry years, with and without the presence/operation of the hydraulic project. A two-dimensional hydrodynamic model was used to simulate the water conditions for each case. Matter-element theory, 3S technology and ecological knowledge were combined to develop a matter-element-based habitat suitability model in a geographic information system (GIS)-based platform. We assessed and compared the habitat suitability in four scenarios: (1) Wet year without the hydraulic project, (2) wet year with the hydraulic project, (3) dry year without the hydraulic project, and (4) dry year with the hydraulic project. The results showed that the operation of the hydraulic project can effectively alleviate the water shortage issue in the wetland and increase the area of habitats suitable for migratory birds in typical dry years. However, it can reduce the area of suitable habitats in the northern provincial nature reserve of the lake. In addition, a reasonable management of the lake’s fishing activities can also increase habitat suitability and promote balanced patterns between human activities and migratory bird habitats.

Funder

National Natural Science Foundation of China

Jiangxi Water Conservancy Science and Technology Plan Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3