GPGPU Task Scheduling Technique for Reducing the Performance Deviation of Multiple GPGPU Tasks in RPC-Based GPU Virtualization Environments

Author:

Kang JihunORCID,Yu Heonchang

Abstract

In remote procedure call (RPC)-based graphic processing unit (GPU) virtualization environments, GPU tasks requested by multiple-user virtual machines (VMs) are delivered to the VM owning the GPU and are processed in a multi-process form. However, because the thread executing the computing on general GPUs cannot arbitrarily stop the task or trigger context switching, GPU monopoly may be prolonged owing to a long-running general-purpose computing on graphics processing unit (GPGPU) task. Furthermore, when scheduling tasks on the GPU, the time for which each user VM uses the GPU is not considered. Thus, in cloud environments that must provide fair use of computing resources, equal use of GPUs between each user VM cannot be guaranteed. We propose a GPGPU task scheduling scheme based on thread division processing that supports GPU use evenly by multiple VMs that process GPGPU tasks in an RPC-based GPU virtualization environment. Our method divides the threads of the GPGPU task into several groups and controls the execution time of each thread group to prevent a specific GPGPU task from a long time monopolizing the GPU. The efficiency of the proposed technique is verified through an experiment in an environment where multiple VMs simultaneously perform GPGPU tasks.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference44 articles.

1. Enabling Intel Virtualization Technology Features and Benefitshttps://images.nvidia.com/content/pdf/grid/whitepaper/NVIDIA-GRID-WHITEPAPER-vGPU-Delivering-Scalable-Graphics-Rich-Virtual-Desktops.pdf

2. Credit Schedulerhttps://wiki.xen.org/wiki/CreditScheduler

3. Completely Fair Schedulerhttps://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html

4. Amazon EC2 P4d Instanceshttps://aws.amazon.com/ec2/instance-types/p4/?nc1=h_ls

5. Microsoft Azure GPU Optimized Virtual Machine Sizeshttps://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3