A New Simplification Algorithm for Scattered Point Clouds with Feature Preservation

Author:

Gong Miao,Zhang Zhijiang,Zeng Dan

Abstract

High-precision and high-density three-dimensional point cloud models usually contain redundant data, which implies extra time and hardware costs in the subsequent data processing stage. To analyze and extract data more effectively, the point cloud must be simplified before data processing. Given that point cloud simplification must be sensitive to features to ensure that more valid information can be saved, in this paper, a new simplification algorithm for scattered point clouds with feature preservation, which can reduce the amount of data while retaining the features of data, is proposed. First, the Delaunay neighborhood of the point cloud is constructed, and then the edge points of the point cloud are extracted by the edge distribution characteristics of the point cloud. Second, the moving least-square method is used to obtain the normal vector of the point cloud and the valley ridge points of the model. Then, potential feature points are identified further and retained on the basis of the discrete gradient idea. Finally, non-feature points are extracted. Experimental results show that our method can be applied to models with different curvatures and effectively avoid the hole phenomenon in the simplification process. To further improve the robustness and anti-noise ability of the method, the neighborhood of the point cloud can be extended to multiple levels, and a balance between simplification speed and accuracy needs to be found.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LiDAR point cloud simplification algorithm with fuzzy encoding-decoding mechanism;Applied Soft Computing;2024-09

2. A new point cloud simplification algorithm based on V-P container constraint and normal vector angle information entropy;Measurement Science and Technology;2024-06-28

3. 3D Point Clouds Simplification Based on Low-dimensional Contour FeatureExtraction;Proceedings of the 2024 2nd Asia Conference on Computer Vision, Image Processing and Pattern Recognition;2024-04-26

4. Features extraction of point clouds based on Otsu’s algorithm;Measurement Science and Technology;2024-03-20

5. PCA‐based fast point feature histogram simplification algorithm for point clouds;Engineering Reports;2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3