Past and Present Drivers of Karst Formation of Ciénega de El Mangle, Panama

Author:

Rivera-Solís Jaime12ORCID,Quesada-Román Adolfo3ORCID,Domazetović Fran4ORCID

Affiliation:

1. Centro de Capacitación, Investigación y Monitoreo de la Biodiversidad (CCIMBIO-CRUV-UP), Centro Regional Universitario de Veraguas (CRUV), Universidad de Panamá, Transistmica 0923, Panama

2. Departamento de Geografía Física, Universidad de Panamá, Transistmica 0923, Panama

3. Laboratorio de Geografía Física, Escuela de Geografía, Universidad de Costa Rica, San José 2060, Costa Rica

4. Center for Geospatial Technologies, Department of Geography, University of Zadar, 23000 Zadar, Croatia

Abstract

Tropical coastal karst areas represent dynamic, fragile, and biodiverse environments. Central America’s karst regions have been scarcely studied, with most of the research focused on the northern part of the region and on several larger cave systems. The coastal carbonate zones of the Central American region represent a unique karstic landscape, which, so far, has been insufficiently studied. Therefore, in this paper, we aim to describe the (i) landscape geomorphology and (ii) chemical conditions that define Ciénega de El Mangle in Panama as a distinctive karstic site. Carried geomorphological mapping and the characterization of karstic features have resulted in the identification of the different karstic forms and processes that are present within this unique karstic area. Considering that the chosen karstic study area is located in a marine–coastal fringe on the periphery of a lagoon, it is affected by a combination of several factors and processes, including seawater intrusion (through sinkholes), the formation of conchiferous limestone (CaCO3), and NaCl precipitation related to efflorescence. Due to the seasonally humid tropical climate, the chemical weathering processes are intense, thus forming alkaline soils that are hindering the development of mangrove vegetation. The geomorphology of the area results from intense evaporation combined with an influx of brackish groundwater, due to which a landscape has evolved in the marine–coastal strips, of seasonal tropical climates, that exhibit saline beaches, known as a littoral shott. In total, 24 karstic microdolines have evolved within the shott, of which six represent domical geoforms formed by gradual evaporitic precipitation, while seven other geoforms represent active karstic sinkholes filled with brackish water. These results are key for understanding the past and present climate interactions and conditions that have led to the formation of tropical karst environments.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3