Multiscale Computational Simulation of Amorphous Silicates’ Structural, Dielectric, and Vibrational Spectroscopic Properties

Author:

Martínez-González José,Navarro-Ruiz JavierORCID,Rimola Albert

Abstract

Silicates are among the most abundant and important inorganic materials, not only in the Earth’s crust, but also in the interstellar medium in the form of micro/nanoparticles or embedded in the matrices of comets, meteorites, and other asteroidal bodies. Although the crystalline phases of silicates are indeed present in nature, amorphous forms are also highly abundant. Here, we report a theoretical investigation of the structural, dielectric, and vibrational properties of the amorphous bulk for forsterite (Mg2SiO4) as a silicate test case by a combined approach of classical molecular dynamics (MD) simulations for structure evolution and periodic quantum mechanical Density Functional Theory (DFT) calculations for electronic structure analysis. Using classical MD based on an empirical partial charge rigid ionic model within a melt-quenching scheme at different temperatures performed with the GULP 4.0 code, amorphous bulk structures for Mg2SiO4 were generated using the crystalline phase as the initial guess. This has been done for bulk structures with three different unit cell sizes, adopting a super-cell approach; that is, 1 × 1 × 2, 2 × 1 × 2, and 2 × 2 × 2. The radial distribution functions indicated a good degree of amorphization of the structures. Periodic B3LYP-geometry optimizations performed with the CRYSTAL14 code on the generated amorphous systems were used to analyze their structure; to calculate their high-frequency dielectric constants (ε∞); and to simulate their IR, Raman, and reflectance spectra, which were compared with the experimental and theoretical crystalline Mg2SiO4. The most significant changes of the physicochemical properties of the amorphous systems compared to the crystalline ones are presented and discussed (e.g., larger deviations in the bond distances and angles, broadening of the IR bands, etc.), which are consistent with their disordered nature. It is also shown that by increasing the unit cell size, the bulk structures present a larger degree of amorphization.

Funder

Ministerio de Economía y Competitividad

Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3