Chemical Composition of Mn- and Cl-Rich Apatites from the Szklary Pegmatite, Central Sudetes, SW Poland: Taxonomic and Genetic Implications

Author:

Szuszkiewicz Adam,Pieczka Adam,Gołębiowska Bożena,Dumańska-Słowik MagdalenaORCID,Marszałek Mariola,Szełęg Eligiusz

Abstract

Although calcium phosphates of the apatite group (apatites) with elevated contents of Mn are common accessory minerals in geochemically evolved granitic pegmatites, their Mn-dominant analogues are poorly studied. Pieczkaite, M1Mn2M2Mn3(PO4)3XCl, is an exceptionally rare Mn analogue of chlorapatite known so far from only two occurrences in the world, i.e., granitic pegmatites at Cross Lake, Manitoba, Canada and Szklary, Sudetes, SW Poland. In this study, we present the data on the compositional variation and microtextural relationships of various apatites highly enriched in Mn and Cl from Szklary, with the main focus on compositions approaching or attaining the stoichiometry of pieczkaite (pieczkaite-like apatites). The main goal of this study is to analyze their taxonomical position as well as discuss a possible mode of origin. The results show that pieczkaite-like apatites represent the Mn-rich sector of the solid solution M1(Mn,Ca)2M2(Mn,Ca)3(PO4)3X(Cl,OH). In the case of cation-disordered structure, all these compositions represent extremely Mn-rich hydroxylapatite or pieczkaite. However, for cation-ordered structure, there are also intermediate compositions for which the existence of two hypothetical end-member species can be postulated: M1Ca2M2Mn3(PO4)3XCl and M1Mn2M2Ca3(PO4)3XOH. In contrast to hydroxylapatite and pieczkaite, that are members of the apatite-group, the two hypothetical species would classify into the hedyphane group within the apatite supergroup. The pieczkaite-like apatites are followed by highly Mn-enriched fluor- and hydroxylapatites in the crystallization sequence. Mn-poor chlorapatites, on the other hand, document local contamination by the serpentinite wall rocks. We propose that pieczkaite-like apatites in the Szklary pegmatite formed from small-volume droplets of P-rich melt that unmixed from the LCT-type (Li–Cs–Ta) pegmatite-forming melt with high degree of Mn-Fe fractionation. The LCT melt became locally enriched in Cl through in situ contamination by wall rock serpentinites.

Funder

Narodowe Centrum Nauki

Uniwersytet Wrocławski

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3