(10.4) Face of Ordered and Disordered Dolomite, MgCa(CO3)2: A Computational Study to Reveal the Growth Mechanism

Author:

Bruno Marco,Bittarello EricaORCID

Abstract

In this study, the stability of the (10.4) face of dolomite was systematically investigated. The surface energies at 0 K of the different (10.4) surfaces resulting from the cut of both ordered and disordered bulk structures were determined and compared, to establish how different atomic configurations (surface terminations) can affect the stability of the investigated face. To study the thermodynamic behavior of a surface, a 2D periodic slab model and the ab initio CRYSTAL code were adopted. The surface energies of the (10.4) faces of calcite and magnesite were also calculated in order to compare them with those of the different terminations of the (10.4) face of dolomite. Our calculations showed that the bulk of the dolomite crystal must have an ordered structure to reach the minimum of the energy, whereas the (10.4) surface is more stable when its structure is disordered. A growth model of the (10.4) face has been proposed: the peculiarity of this model consists in the existence of some disordered layers forming at the interface crystal/solution, which arrange in an ordered structure once covered by others disordered layers resulting by the spiral steps propagation.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3