Weak Knock Characteristic Extraction of a Two-Stroke Spark Ignition UAV Engine Burning RP-3 Kerosene Fuel Based on Intrinsic Modal Functions Energy Method

Author:

Sheng JingORCID,Liu RuiORCID,Liu GuomanORCID

Abstract

To solve the problem of the weak knock characteristic extraction for a port-injected two-stoke spark ignition (SI) unmanned aerial vehicle (UAV) engine burning aviation kerosene fuel, which is also known as the Rocket Propellant 3 (RP-3), the Intrinsic modal Functions Energy (IMFE) method is proposed according to the orthogonality of the intrinsic modal functions (IMFs). In this method, engine block vibration signals of the two-stroke SI UAV engine are decomposed into a finite number of intrinsic modal function (IMF) components. Then, the energy weight value of each IMF component is calculated, and the IMF component with the largest energy weight value is selected as the dominant characteristic component. The knock characteristic frequency of the two-stroke SI UAV engine is obtained by analyzing the frequency spectrum of the dominant characteristic component. A simulation experiment is designed and the feasibility of the algorithm is verified. The engine block vibration signals of the two-stroke SI UAV engine at 5100 rpm and 5200 rpm were extracted by this method. The results showed that the knock characteristic frequencies of engine block vibration signals at 5100 rpm and 5200 rpm were 3.320 kHz and 3.125 kHz, respectively. The Wavelet Packet Energy method was used to extract the characteristics of the same engine block vibration signal at 5200 rpm, and the same result as the IMFE method is obtained, which verifies the effectiveness of the IMFE method.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference40 articles.

1. Sizing and Simulation of a Piston-prop UAV

2. Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions

3. Experimental Study on the Pressure Characteristics of Gasoline Vapor Explosion under Weak Restrictions

4. Development status of piston aviation heavy oil engine;Zhongjian;Sci. Technol. Rev.,2013

5. Analysis of thermophysical properties of daqing rp-3 aviation kerosene;Fan;J. Propuls. Technol.,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3