Adaptive Repetitive Control of A Linear Oscillating Motor under Periodic Hydraulic Step Load

Author:

Li Xinglu,Jiao Zongxia,Li YangORCID,Cao Yuan

Abstract

A linear oscillating motor has a direct and efficient linear motion output and is widely used in linear actuation systems. The motor is often applied to compact hybrid electrohydraulic actuators to drive a linear pump. However, the periodic switch of the rectification valve in the pump brings the hydraulic step load to the linear motor, which causes periodic oscillation waveform distortions. The distortion results in the reduction of pumping capacity. The conventional feedback proportional-integral-derivative control is applied to the pump, however, this solution cannot handle the step load as well as resolving nonlinear properties and uncertainties. In this paper, we introduce a nonlinear model to identify periodic hydraulic load. Then, the loads are broken up into a set of simple terms by Fourier series approximation. The uncertain terms and other modeling uncertainties are estimated and compensated by the practical adaptive controller. A robust control term is also developed to handle uncertain nonlinearities. The controller overcame drawbacks of conventional repetitive controllers, such as heavy memory requirements and noise sensitivity. The controller can achieve a prescribed final tracking accuracy under periodic hydraulic load via Lyapunov analysis. Finally, experimental results on the linear oscillating motor-pump are provided for validation of the effectiveness of the scheme.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3