Abstract
The need for innovative pathways for future zero-emission and sustainable power development has recently accelerated the uptake of variable renewable energy resources (VREs). However, integration of VREs such as photovoltaic and wind generators requires the right approaches to design and operational planning towards coping with the fluctuating outputs. This paper investigates the technical and economic prospects of scheduling flexible demand resources (FDRs) in optimal configuration planning of VRE-based microgrids. The proposed demand-side management (DSM) strategy considers short-term power generation forecast to efficiently schedule the FDRs ahead of time in order to minimize the gap between generation and load demand. The objective is to determine the optimal size of the battery energy storage, photovoltaic and wind systems at minimum total investment costs. Two simulation scenarios, without and with the consideration of DSM, were investigated. The random forest algorithm implemented on scikit-learn python environment is utilized for short-term power prediction, and mixed integer linear programming (MILP) on MATLAB® is used for optimum configuration optimization. From the simulation results obtained here, the application of FDR scheduling resulted in a significant cost saving of investment costs. Moreover, the proposed approach demonstrated the effectiveness of the FDR in minimizing the mismatch between the generation and load demand.
Subject
Computer Networks and Communications
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献