Tree-Related Microhabitats and Multi-Taxon Biodiversity Quantification Exploiting ALS Data

Author:

Parisi Francesco12ORCID,D’Amico Giovanni34ORCID,Vangi Elia35ORCID,Chirici Gherardo36ORCID,Francini Saverio23ORCID,Cocozza Claudia3ORCID,Giannetti Francesca3ORCID,Londi Guglielmo7,Nocentini Susanna3,Borghi Costanza3ORCID,Travaglini Davide3ORCID

Affiliation:

1. Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, C. da Fonte Lappone, 86090 Pesche, Italy

2. NBFC, National Biodiversity Future Center, 90133 Palermo, Italy

3. geoLAB—Laboratorio di Geomatica Forestale, Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy

4. CREA Research Centre for Forestry and Wood, Viale Santa Margherita, 52100 Pratovecchio, Italy

5. Forest Modelling Laboratory, Institute for Agriculture and Forestry Systems in Mediterranean, National Research Council of Italy (CNR-ISAFOM), 06128 Perugia, Italy

6. Fondazione per il Futuro delle Città, 50145 Firenze, Italy

7. Independent Researcher, 51035 Lamporecchio, Italy

Abstract

The quantification of tree-related microhabitats (TreMs) and multi-taxon biodiversity is pivotal to the implementation of forest conservation policies, which are crucial under the current climate change scenarios. We assessed the capacity of Airborne Laser Scanning (ALS) data to quantify biodiversity indices related to both forest beetle and bird communities and TreMs, calculating the species richness and types of saproxylic and epixylic TreMs using the Shannon index. As biodiversity predictors, 240 ALS-derived metrics were calculated: 214 were point-cloud based, 14 were pixel-level from the canopy height model, and 12 were RGB spectral statistics. We used the random forests algorithm to predict species richness and the Shannon diversity index, using the field plot measures as dependent variables and the ALS-derived metrics as predictors for each taxon and TreMs type. The final models were used to produce wall-to-wall maps of biodiversity indices. The Shannon index produced the best performance for each group considered, with a mean difference of −6.7%. Likewise, the highest R2 was for the Shannon index (0.17, against 0.14 for richness). Our results confirm the importance of ALS data in assessing forest biodiversity indicators that are relevant for monitoring forest habitats. The proposed method supports the quantification and monitoring of the measures needed to implement better forest stands and multi-taxon biodiversity conservation.

Funder

PNRR

Italian Ministry of Universities and Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3