Analysis of Microalgal Density Estimation by Using LASSO and Image Texture Features

Author:

Nguyen Linh1ORCID,Nguyen Dung K.2ORCID,Nguyen Thang34ORCID,Nguyen Binh34ORCID,Nghiem Truong X.5ORCID

Affiliation:

1. Institute of Innovation, Science and Sustainability, Federation University Australia, Churchill, VIC 3842, Australia

2. College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Republic of Korea

3. Department of Engineering, Texas A&M University–Corpus Christi, Corpus Christi, TX 78412, USA

4. Department of Automation and Control Engineering, Thuyloi University, Hanoi 116705, Vietnam

5. School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA

Abstract

Monitoring and estimating the density of microalgae in a closed cultivation system is a critical task in culturing algae since it allows growers to optimally control both nutrients and cultivating conditions. Among the estimation techniques proposed so far, image-based methods, which are less invasive, nondestructive, and more biosecure, are practically preferred. Nevertheless, the premise behind most of those approaches is simply averaging the pixel values of images as inputs of a regression model to predict density values, which may not provide rich information of the microalgae presenting in the images. In this work, we propose to exploit more advanced texture features extracted from captured images, including confidence intervals of means of pixel values, powers of spatial frequencies presenting in images, and entropies accounting for pixel distribution. These diverse features can provide more information of microalgae, which can lead to more accurate estimation results. More importantly, we propose to use the texture features as inputs of a data-driven model based on L1 regularization, called least absolute shrinkage and selection operator (LASSO), where their coefficients are optimized in a manner that prioritizes more informative features. The LASSO model was then employed to efficiently estimate the density of microalgae presenting in a new image. The proposed approach was validated in real-world experiments monitoring the Chlorella vulgaris microalgae strain, where the obtained results demonstrate its outperformance compared with other methods. More specifically, the average error in the estimation obtained by the proposed approach is 1.54, whereas those obtained by the Gaussian process and gray-scale-based methods are 2.16 and 3.68, respectively

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convolutional neural network regression for low-cost microalgal density estimation;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-09

2. Efficient Production of Microalgal Biomass—Step by Step to Industrial Scale;Energies;2024-02-18

3. Software sensors in the monitoring of microalgae cultivations;Reviews in Environmental Science and Bio/Technology;2024-01-10

4. A Simple Estimation Scheme for Leak Detection in Pipelines;E3S Web of Conferences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3