Synchronous Cycle of Available Phosphorus, Iron, and Sulfur in the Sediment of Lancang River Reservoirs

Author:

Mu Zheng,Cheng Yao,Huang Qiang,Hu Mingming,Dong Wei,Fan Jingjing,Wang YuchunORCID

Abstract

Large-scale deep reservoirs associated with hydropower cascade development are known to influence the cycle of phosphorus (P). However, there is scarce information on the fractions and availability of P in sediments of large-scale deep reservoirs constructed due to hydropower cascade development. In this study, we researched the fractions and release mechanism of P in the sediments of large-scale deep reservoirs by analyzing the fractions and availability of P in the sediments of the Xiaowan (XW) and Nuozhadu (NZD) reservoirs in the middle and lower reaches of the Lancang River (China). According to the results, there is a significant difference in the P fractions in the sediments of the XW and NZD reservoirs, but not for the available P in the sediments. Compared to the NZD reservoir, there was less solid bioavailable phosphorus (BAP) in the sediments of the XW reservoir, but the replenishment degree of active solid phase P into pore water was higher in the XW. There was a significant positive correlation between the available P and the BAP; the Fe/P ratio measured by the diffusive gradients in thin films reflects the control of active iron (oxyhydr) oxides over labile P in the sediments. In addition to the reductive dissolution of iron-bound P, the release of P into the large deep reservoirs may be related to factors such as the sulfate reduction and the degradation of organic materials. The P cycling in deep reservoir sediments is mainly controlled by the Fe, and there is a clear spatial distribution of this mechanism in deep reservoirs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3