Abstract
Using landscape moderation insurance and Intermediate Disturbance Hypothesis (IDH) as frameworks, this study assessed the response of local assemblage among different land use regimes (mean β-diversity), using the Jaccard dissimilarity matrix in contrasting Human Modified Forest Landscapes (HMFLs). The study was conducted at the relatively simplified Mafhela Forest Reserve and the complex Thathe Vondo Forest Reserve in South Africa. The patterns of overall β-diversity between HMFL and State-protected Indigenous Forests (SIF) were compared and the leading change drivers were then untangled. This study found that human disturbance affects mean β-diversity of local assemblages among land use regimes between the two HMFLs in an ecologically contrasting manner. The HMFL in Mafhela Forest Reserve had distinct local assemblages among land use regimes and did not conform to the expectation of IDH. On average, HMFL had the same average local species richness as SIF, mainly due to change in species composition (species replacement) induced by land use disturbance. Land use intensity gradient was the leading change driver to explain the overall β-diversity of the Mafhela Forest Reserve. The findings in the Thathe Vondo Forest Reserve were in contrast with the Mafhela Forest Reserve. Although on average the HMFL had the same local species richness as SIFs, this was mainly due to a trade-off of species gain in trees along the rivers and streams and species loss in Culturally Protected Areas (sacred forests) (CPA) as expected by IDH. The contrasting findings imply that the effectiveness of any alternative conservation strategy is context-dependent. The resilience of local assemblages and conservation value of HMFL depends on the condition of the overall forest landscape complexity and cannnot be captured by one theory, nor by one species diversity matrix (e.g., β-diversity or Richness). It thus demands the application of complementary theoretical frameworks and multilevel modeling.
Subject
Nature and Landscape Conservation,Ecology,Global and Planetary Change
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献