Integrated Tomato Picking and Distribution Scheduling Based on Maturity

Author:

Zhu Anqi,Bian Bei,Jiang YipingORCID,Hu Jiaxiang

Abstract

Agriproducts have the characteristics of short lifespan and quality decay due to the maturity factor. With the development of e-commerce, high timelines and quality have become a new pursuit for agriproduct online retailing. To satisfy the new demands of customers, reducing the time from receiving orders to distribution and improving agriproduct quality are significantly needed advancements. In this study, we focus on the joint optimization of the fulfillment of online tomato orders that integrates picking and distribution simultaneously within the context of the farm-to-door model. A tomato maturity model with a firmness indicator is proposed firstly. Then, we incorporate the tomato maturity model function into the integrated picking and distribution schedule and formulate a multiple-vehicle routing problem with time windows. Next, to solve the model, an improved genetic algorithm (the sweep-adaptive genetic algorithm, S-AGA) is addressed. Finally, we prove the validity of the proposed model and the superiority of S-AGA with different numerical experiments. The results show that significant improvements are obtained in the overall tomato supply chain efficiency and quality. For instance, tomato quality and customer satisfaction increased by 5% when considering the joint optimization, and the order processing speed increased over 90% compared with traditional GA. This study could provide scientific tomato picking and distribution scheduling to satisfy the multiple requirements of consumers and improve agricultural and logistics sustainability.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3