Abstract
Soil nitrous oxide (N2O) emissions are influenced by land use adjustment and management practices. To meet the increasing socioeconomic development and sustainable demands for food supply, forestland conversion to cropland occurs around the world. However, the effects of forestland conversion to cropland as well as of tillage and fertilization practices on soil N2O emissions are still not well understood, especially in subtropical regions. Therefore, field experiments were carried out to continuously monitor soil N2O emissions after the conversion of forestland to cropland in a subtropical region in Southwest China. One forestland site and four cropland sites were selected: forestland (CK), short-term croplands (tillage with and without fertilization, NC-TF and NC-T), and long-term croplands (tillage with and without fertilization, LC-TF and LC-T). The annual cumulative N2O flux was 0.21 kg N ha−1 yr−1 in forestland. After forestland conversion to cropland, the annual cumulative N2O flux significantly increased by 76‒491%. In the short-term and long-term croplands, tillage with fertilization induced cumulative soil N2O emissions that were 94% and 235% higher than those from tillage without fertilization. Fertilization contributed 63% and 84% to increased N2O emissions in the short-term and long-term croplands, respectively. A stepwise regression analysis showed that soil N2O emissions from croplands were mainly influenced by soil NO3− and NH4+ availability and WFPS (water-filled pore space). Fertilization led to higher soil NH4+ and NO3− concentrations, which thus resulted in larger N2O fluxes. Thus, to reduce soil N2O emissions and promote the sustainable development of the eco-environment, we recommend limiting the conversion of forestland to cropland, and meanwhile intensifying the shift from grain to green or applying advanced agricultural management practices as much as possible.
Funder
National Key Research and Development Program of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献