How Tillage and Fertilization Influence Soil N2O Emissions after Forestland Conversion to Cropland

Author:

Ren Xiao,Zhu Bo,Bah HamidouORCID,Raza Syed Turab

Abstract

Soil nitrous oxide (N2O) emissions are influenced by land use adjustment and management practices. To meet the increasing socioeconomic development and sustainable demands for food supply, forestland conversion to cropland occurs around the world. However, the effects of forestland conversion to cropland as well as of tillage and fertilization practices on soil N2O emissions are still not well understood, especially in subtropical regions. Therefore, field experiments were carried out to continuously monitor soil N2O emissions after the conversion of forestland to cropland in a subtropical region in Southwest China. One forestland site and four cropland sites were selected: forestland (CK), short-term croplands (tillage with and without fertilization, NC-TF and NC-T), and long-term croplands (tillage with and without fertilization, LC-TF and LC-T). The annual cumulative N2O flux was 0.21 kg N ha−1 yr−1 in forestland. After forestland conversion to cropland, the annual cumulative N2O flux significantly increased by 76‒491%. In the short-term and long-term croplands, tillage with fertilization induced cumulative soil N2O emissions that were 94% and 235% higher than those from tillage without fertilization. Fertilization contributed 63% and 84% to increased N2O emissions in the short-term and long-term croplands, respectively. A stepwise regression analysis showed that soil N2O emissions from croplands were mainly influenced by soil NO3− and NH4+ availability and WFPS (water-filled pore space). Fertilization led to higher soil NH4+ and NO3− concentrations, which thus resulted in larger N2O fluxes. Thus, to reduce soil N2O emissions and promote the sustainable development of the eco-environment, we recommend limiting the conversion of forestland to cropland, and meanwhile intensifying the shift from grain to green or applying advanced agricultural management practices as much as possible.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3