Development of a High-Performance Electric Pressure Regulator Applied for Compressed-Natural-Gas-Fueled Vehicles

Author:

Hung Nguyen Ba,Lim Ocktaeck

Abstract

A model-based study is carried out based on a combination of mathematical and Maxwell models to develop a high-performance electric pressure regulator utilized for compressed-natural-gas-fueled vehicles. To reduce computational cost, a symmetric two-direction model of the electric pressure regulator is established in Maxwell software, in which its material properties and dimension parameters are obtained on the base of specifications of a real electric pressure regulator. The output of simulating in Maxwell is the electromagnetic force, which is significantly improved when changing core shape in the various dimensions ∆1, ∆2, and ∆3. The optimal electromagnetic force is utilized for the mathematical models as an input variable to simulate the operational characteristics of the electric pressure regulator such as displacement and response time of plunger. The operational characteristics of the electric pressure regulator are examined under the influences of key parameters, including inlet gas pressure, diameter of orifice, and spring stiffness. By optimizing these key parameters, the simulated results in this study show that an electric pressure regulator with high performance can be obtained.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3