Spatial Variation of Land Use/Cover Composition and Impact on Surface Urban Heat Island in a Tropical Sub-Saharan City of Accra, Ghana

Author:

Athukorala DarshanaORCID,Murayama YujiORCID

Abstract

Rapid urbanization is one of the most crucial issues in the world of the 21st century. Notably, the urban heat island phenomenon is becoming more prominent in megacities and their hinterlands in temperate and subtropical climatic regions. In the daytime in summer, there exists a high possibility of accelerating the land surface temperature (LST) in desert cities, due to the alterations made by human beings in the natural environment. In this study, we investigate the spatial formation of LST in a tropical sub-Saharan city of Accra, a gateway to West Africa, using Landsat data in 2003 and 2017. Machine learning techniques and the different spatial and statistical methods such as tasseled cap transformation (TCT), urban-rural gradient, and multiresolution grid-based and landscape metrics were employed to examine procured land use/cover (LUC) and LST maps. LUC was classified into five categories: Built up, Green 1, Green 2, Bare land, and Water. The results of the analysis indicate that Built up, Green 2, and Bare land had caused the highest heating effect while Green 1 and Water had caused the considerable cooling effect during the daytime in Accra. The urban-rural difference in LST recorded 1.4 °C in 2003 and 0.28 °C in 2017. The mean size, mean shape, largest patch, and aggregation of Built up, Green 1, and Green 2 had a strong relationship with the mean LST. It is essential for urban planners to carefully examine the formation and effect of the urban heat island (UHI) for sustainable urban development and landscape policy toward mitigation and adaptation planning in Accra.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3