Immobilization Behavior and Mechanism of Cd2+ by Sulfate-Reducing Bacteria in Anoxic Environments

Author:

Liao Lang1ORCID,Li Qian1,Yang Yongbin1,Xu Rui12,Zhang Yan1ORCID

Affiliation:

1. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

2. Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China

Abstract

It is vital to remove cadmium from wastewater because of its potential harm to the natural environment and human health. It was found that sulfate-reducing bacteria (SRB) had a good fixing effect on Cd under a strict anaerobic environment. However, there are few reports on the immobilization effect and mechanism of SRB on Cd in an anoxic environment. This study revealed the effects of initial Cd2+ concentration, initial SO42− concentration, temperature, pH, and C/N ratio on the immobilization of Cd2+ by SRB in aqueous solution under an anoxic environment. The experimental results showed that under the conditions of initial concentration of Cd2+ within 0 mg/L~30 mg/L, initial concentration of SO42− within 1200 mg/L, temperature within 25 °C~35 °C, pH neutral, and C/N ratio of 20:1, the immobilization rate of Cd2+ by SRB is above 90%. The characterization results showed that bioadsorption and chemical precipitation were the main mechanisms of SRB immobilization of Cd2+ in an anoxic environment.

Funder

Key Research and Development Projects of the Science and Technology Department of Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3