Influence of Technological Factors on the Formation and Transformation of Iron-Containing Phases in the Process of Ferritization of Exhausted Etching Solutions

Author:

Samchenko Dmitry1,Kochetov Gennadii1,Trach Yuliia23ORCID,Chernyshev Denys1ORCID,Kravchuk Andriy1

Affiliation:

1. Faculty of Engineering Systems and Ecology, Kyiv National University of Construction and Architecture, 03680 Kyiv, Ukraine

2. Institute of Agroecology and Land Management, National University of Water and Environmental Engineering, 33028 Rivne, Ukraine

3. Faculty of Civil and Environmental Engineering, Institute of Civil Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland

Abstract

Every year, metallurgical enterprises generate a massive amount of toxic exhausted high-concentration etching solutions. Application of the ferritization process to recycle exhausted etching solutions can help to prevent environmental pollution. It enables a cost-efficient use of water at an industrial plant and allows the plant to obtain products from toxic industrial waste and utilize it. The aim of the study was to analyze the qualitative and quantitative composition of the formed sediment and its grain size composition. Variable study parameters were the initial pH values of the solutions, the initial concentrations of total iron, and the duration of the aeration process of the reaction mixture. Thermal activation and alternating magnetic fields were used to activate the ferritization. The XRD showed that the formed sediments contained phases of γ-FeOOH, δ-FeOOH, Fe3O4, and γ-Fe2O3. Granulometry analysis showed that these sediments were highly dispersed and heterogeneous. Chemically stable phases of magnetite were obtained in the composition of sediments, with an initial concentration of iron in the reaction mixture of 16.6 g/dm3, a pH of 11.5, and a process duration of 15 min. The study results demonstrated the feasibility of further study and possible use of such sediments with a high magnetite content for the production of materials with ferromagnetic and sorption properties.

Funder

The Science and Technology Center in Ukraine

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3