Energy-Efficient Wearable EPTS Device Using On-Device DCNN Processing for Football Activity Classification

Author:

Kim HyunsungORCID,Kim JaeheeORCID,Kim Young-Seok,Kim Mijung,Lee YoungjooORCID

Abstract

This paper presents an energy-optimized electronic performance tracking system (EPTS) device for analyzing the athletic movements of football players. We first develop a tiny battery-operated wearable device that can be attached to the backside of field players. In order to analyze the strategic performance, the proposed wearable EPTS device utilizes the GNSS-based positioning solution, the IMU-based movement sensing system, and the real-time data acquisition protocol. As the life-time of the EPTS device is in general limited due to the energy-hungry GNSS sensing operations, for the energy-efficient solution extending the operating time, in this work, we newly develop the advanced optimization methods that can reduce the number of GNSS accesses without degrading the data quality. The proposed method basically identifies football activities during the match time, and the sampling rate of the GNSS module is dynamically relaxed when the player performs static movements. A novel deep convolution neural network (DCNN) is newly developed to provide the accurate classification of human activities, and various compression techniques are applied to reduce the model size of the DCNN algorithm, allowing the on-device DCNN processing even at the memory-limited EPTS device. Experimental results show that the proposed DCNN-assisted sensing control can reduce the active power by 28%, consequently extending the life-time of the EPTS device more than 1.3 times.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3