A Conceptual Framework for Choosing Target Species for Wildlife-Inclusive Urban Design

Author:

Apfelbeck Beate,Jakoby Christine,Hanusch MaximilianORCID,Steffani Emanuel Boas,Hauck Thomas E.,Weisser Wolfgang W.

Abstract

Recent research has highlighted the significance of cities for biodiversity, making them important places for conservation in their own right. Current conservation approaches in cities are mostly defensive. Thus, they focus on remnant pockets of natural areas or try to protect particular species that occur in the built environment. These approaches are vulnerable to further urban development and do not create habitats. An alternative strategy is to make wildlife an integral part of urban development and thereby create a new habitat in the built-up area. Here we address the challenge of choosing target species for such wildlife-inclusive urban design. The starting point of our conceptual framework is the regional species pool, which can be obtained from geo-referenced species data. The existing habitat types on and around the development site and dispersal barriers limit the species numbers to the local species potential. In the next step, the site’s potential for each species is analyzed—how can it be upgraded to host species given the planned development and the life-cycle of the species? For the final choice of target species, traits related to the human–animal interaction are considered. We suggest that stakeholders will be involved in the final species selection. Our approach differs from existing practice, such as expert choice of priority species, by (1) representing an open process where many species are potential targets of conservation, (2) the involvement of stakeholders in a participatory way. Our approach can also be used at larger spatial scales such as quarters or entire cities.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3