Abstract
This paper proposes a new population-based hybrid particle swarm optimized-gravitational search algorithm (PSO-GSA) for tuning the parameters of the proportional-integral-derivative (PID) controller of a two-area interconnected dynamic power system with the presence of nonlinearities such as generator rate constraints (GRC) and governor dead-band (GDB). The tuning of controller parameters such as Kp, Ki, and Kd are obtained by minimizing the objective function formulated using the steady-state performance indices like Integral absolute error (IAE) of tie-line power and frequency deviation of interconnected system. To test the robustness of the propounded controller, the system is studied with system uncertainties, such as change in load demand, synchronizing power coefficient and inertia constant. The two-area interconnected power system (TAIPS) is modeled and simulated using Matlab/Simulink. The results exhibit that the steady-state and transient performance indices such as IAE, settling time, and control effort are impressively enhanced by an amount of 87.65%, 15.39%, and 91.17% in area-1 and 86.46%, 41.35%, and 91.04% in area-2, respectively, by the proposed method compared to other techniques presented. The minimum control effort of PSO-GSA-tuned PID controller depicts the robust performance of the controller compared to other non-meta-heuristic and meta-heuristic methods presented. The proffered method is also validated using the hardware-in-the-loop (HIL) real-time digital simulation to study the effectiveness of the controller.
Funder
Universiti Putra Malaysia
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献