A Human Cellular Model for Colorectal Anastomotic Repair: The Effect of Localization and Transforming Growth Factor-β1 Treatment on Collagen Deposition and Biomarkers

Author:

Türlü Ceylan,Willumsen Nicholas,Marando DeboraORCID,Schjerling PeterORCID,Biskup EdytaORCID,Hannibal JensORCID,Jorgensen Lars N.ORCID,Ågren Magnus S.ORCID

Abstract

Anastomotic leakage (AL) is a devastating complication after colorectal surgery, possibly due to the loss of stabilizing collagen fibers in the submucosa. Our aim was to assess the formation of collagen in the colon versus the rectum with or without transforming growth factor (TGF)-β1 exposure in a human cellular model of colorectal repair. Primary fibroblasts were isolated by an explant procedure from clinically resected tissue rings during anastomosis construction in 19 consecutive colorectal patients who underwent laparoscopy. The cells, identified as fibroblasts by morphologic characteristics and flow cytometry analysis (CD90+), were cultured for 8 days and in 12 patients in the presence of 1 ng/mL TGF-β1. Total collagen deposition was measured colorimetrically after Sirius red staining of fixed cell layers, and type I, III, and VI collagen biosynthesis and degradation were specifically determined by the biomarkers PINP, PRO-C3, PRO-C6, and C3M in conditioned media by competitive enzyme-linked immunosorbent assays. Total collagen deposition by fibroblasts from the colon and rectum did not significantly differ. TGF-β1 treatment increased PINP, PRO-C6, and total collagen deposition. Mechanistically, TGF-β1 treatment increased COL1A1 and ACTA2 (encoding α-smooth muscle actin), and decreased COL6A1 and MMP2 mRNA levels in colorectal fibroblasts. In conclusion, we found no effect of anatomic localization on collagen production by fibroblasts derived from the large intestine. TGF-β1 represents a potential therapeutic agent for the prevention of AL by increasing type I collagen synthesis and collagen deposition.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3