Neurotrophins Time Point Intervention after Traumatic Brain Injury: From Zebrafish to Human

Author:

Cacialli PietroORCID

Abstract

Traumatic brain injury (TBI) remains the leading cause of long-term disability, which annually involves millions of individuals. Several studies on mammals reported that neurotrophins could play a significant role in both protection and recovery of function following neurodegenerative diseases such as stroke and TBI. This protective role of neurotrophins after an event of TBI has also been reported in the zebrafish model. Nevertheless, reparative mechanisms in mammalian brain are limited, and newly formed neurons do not survive for a long time. In contrast, the brain of adult fish has high regenerative properties after brain injury. The evident differences in regenerative properties between mammalian and fish brain have been ascribed to remarkable different adult neurogenesis processes. However, it is not clear if the specific role and time point contribution of each neurotrophin and receptor after TBI is conserved during vertebrate evolution. Therefore, in this review, I reported the specific role and time point of intervention for each neurotrophic factor and receptor after an event of TBI in zebrafish and mammals.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3