In Vitro Suppression of T Cell Proliferation Is a Conserved Function of Primary and Immortalized Human Cancer-Associated Fibroblasts

Author:

Abuwarwar Mohammed H.,Baker Alfie T.,Harding Jeffrey,Payne Natalie L.,Nagy Andras,Knoblich KonstantinORCID,Fletcher Anne L.

Abstract

T cell immunotherapy is now a mainstay therapy for several blood-borne cancers as well as metastatic melanoma. Unfortunately, many epithelial tumors respond poorly to immunotherapy, and the reasons for this are not well understood. Cancer-associated fibroblasts (CAFs) are the most frequent non-neoplastic cell type in most solid tumors, and they are emerging as a key player in immunotherapy resistance. A range of immortalized CAF lines will be essential tools that will allow us to understand immune responses against cancer and develop novel strategies for cancer immunotherapy. To study the effect of CAFs on T cell proliferation, we created and characterized a number of novel immortalized human CAFs lines (Im-CAFs) from human breast, colon, and pancreatic carcinomas. Im-CAFs shared similar phenotypes, matrix remodeling and contraction capabilities, and growth and migration rates compared to the primary CAFs. Using primary isolates from breast carcinoma, colorectal carcinoma, and pancreatic ductal adenocarcinoma, we report that CAFs across major tumor types are able to potently suppress T cell proliferation in vitro. Im-CAFs retained this property. Im-CAFs are a key tool that will provide important insights into the mechanisms of CAF-mediated T cell suppression through techniques such as CRISPR-Cas9 modification, molecular screens, and pipeline drug testing.

Funder

Saudi Arabian Cultural Mission

Faculty of Medicine, Nursing and Health Sciences, Monash University

Monash Graduate Scholarship

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3