Acrylamide Induces Mitophagy and Alters Macrophage Phenotype via Reactive Oxygen Species Generation

Author:

Hung Chih-Hsing,Lin Yi-ChingORCID,Tsai Yi-Giien,Lin Yu-Chih,Kuo Chia-Hong,Tsai Mei-Lan,Kuo Chao-Hung,Liao Wei-TingORCID

Abstract

Acrylamide is a readily exposed toxic organic compound due to its formation in many carbohydrate rich foods that are cooked at high temperatures. Excessive production of reactive oxygen species (ROS), which is an important factor for mitophagy, has been reported to lead to airway inflammation, hyper-responsiveness, and remodeling. Epigenetic regulation is an important modification affecting gene transcription. In this study, the effects of acrylamide on ROS productions and mitophagy were investigated. The human monocytic cell line THP-1 was treated with acrylamide, and ROS productions were investigated by flow cytometry. The mitochondrial and epigenetic involvement was evaluated by quantitative real-time PCR. Histone modifications were examined by chromatin immunoprecipitation assays. Mitophagy was detected by Western blotting and confocal laser microscopy. Acrylamide promoted mitochondria-specific ROS generation in macrophages. The gene expression of mitochondrial respiratory chain complex II SDHA was increased under acrylamide treatment. Acrylamide induced histone H3K4 and H3K36 tri-methylation in an SDHA promoter and increased mitophagy-related PINK1 expression, which promoted a M2-like phenotypic switch with increase TGF-β and CCL2 levels in THP-1 cells. In conclusion, acrylamide induced ROS production through histone tri-methylation in an SDHA promoter and further increased the expression of mitophagy-related PINK-1, which was associated with a macrophage M2 polarization shift.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3