Biotin-Containing Third Generation Glucoheptoamidated Polyamidoamine Dendrimer for 5-Aminolevulinic Acid Delivery System

Author:

Kaczorowska AleksandraORCID,Malinga-Drozd Małgorzata,Kałas Wojciech,Kopaczyńska Marta,Wołowiec StanisławORCID,Borowska Katarzyna

Abstract

Polyamidoamine PAMAM dendrimer generation 3 (G3) was modified by attachment of biotin via amide bond and glucoheptoamidated by addition of α-D-glucoheptono-1,4-lacton to obtain a series of conjugates with a variable number of biotin residues. The composition of conjugates was determined by detailed 1-D and 2-D NMR spectroscopy to reveal the number of biotin residues, which were 1, 2, 4, 6, or 8, while the number of glucoheptoamide residues substituted most of the remaining primary amine groups of PAMAM G3. The conjugates were then used as host molecules to encapsulate the 5-aminolevulinic acid. The solubility of 5-aminolevulinic acid increased twice in the presence of the 5-mM guest in water. The interaction between host and guest was accompanied by deprotonation of the carboxylic group of 5-aminolevulinic acid and proton transfer into internal ternary nitrogen atoms of the guest as evidenced by a characteristic chemical shift of resonances in the 1H NMR spectrum of associates. The guest molecules were most likely encapsulated inside inner shell voids of the host. The number of guest molecules depended on the number of biotin residues of the host, which was 15 for non-biotin-containing glucoheptoamidated G3 down to 6 for glucoheptoamidated G3 with 8 biotin residues on the host surface. The encapsulates were not cytotoxic against Caco-2 cells up to 200-µM concentration in the dark. All encapsulates were able to deliver 5-aminolevulinic acid to cells but aqueous encapsulates were more active in this regard. Simultaneously, the reactive oxygen species were detected by staining with H2DCFDA in Caco-2 cells incubated with encapsulates. The amount of PpIX was sufficient for induction of reactive oxygen species upon 30-s illumination with a 655-nm laser beam.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3