Nrf2 Activation Sensitizes K-Ras Mutant Pancreatic Cancer Cells to Glutaminase Inhibition

Author:

Hamada Shin,Matsumoto Ryotaro,Tanaka Yu,Taguchi KeikoORCID,Yamamoto Masayuki,Masamune Atsushi

Abstract

Pancreatic cancer remains intractable owing to the lack of effective therapy for unresectable cases. Activating mutations of K-ras are frequently found in pancreatic cancers, but these have not yet been targeted by cancer therapies. The Keap1-Nrf2 system plays a crucial role in mediating the oxidative stress response, which also contributes to cancer progression. Nrf2 activation reprograms the metabolic profile to promote the proliferation of cancer cells. A recent report suggested that K-ras- and Nrf2-active lung cancer cells are sensitive to glutamine depletion. This finding led to the recognition of glutaminase inhibitors as novel anticancer agents. In the current study, we used murine pancreatic cancer tissues driven by mutant K-ras and p53 to establish cell lines expressing constitutively activated Nrf2. Genetic or pharmacological Nrf2 activation in cells via Keap1 deletion or Nrf2 activation sensitized cells to glutaminase inhibition. This phenomenon was confirmed to be dependent on K-ras activation in human pancreatic cancer cell lines harboring mutant K-ras, i.e., Panc-1 and MiaPaCa-2 in response to DEM pretreatment. This phenomenon was not observed in BxPC3 cells harboring wildtype K-ras. These results indicate the possibility of employing Nrf2 activation and glutaminase inhibition as novel therapeutic interventions for K-ras mutant pancreatic cancers.

Funder

Japan Society for the Promotion of Science

Smoking Research Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3