Inhibitors of Nucleotide Excision Repair Decrease UVB-Induced Mutagenesis—An In Vitro Study

Author:

Fidrus EszterORCID,Hegedűs Csaba,Janka Eszter Anna,Paragh György,Emri Gabriella,Remenyik Éva

Abstract

The high incidence of skin cancers in the Caucasian population is primarily due to the accumulation of DNA damage in epidermal cells induced by chronic ultraviolet B (UVB) exposure. UVB-induced DNA photolesions, including cyclobutane–pyrimidine dimers (CPDs), promote mutations in skin cancer driver genes. In humans, CPDs are repaired by nucleotide excision repair (NER). Several commonly used and investigational medications negatively influence NER in experimental systems. Despite these molecules’ ability to decrease NER activity in vitro, the role of these drugs in enhancing skin cancer risk is unclear. In this study, we investigated four molecules (veliparib, resveratrol, spironolactone, and arsenic trioxide) with well-known NER-inhibitory potential in vitro, using UVB-irradiated CHO epithelial and HaCaT immortalized keratinocyte cell lines. Relative CPD levels, hypoxanthine phosphoribosyltransferase gene mutation frequency, cell viability, cell cycle progression, and protein expression were assessed. All four molecules significantly elevated CPD levels in the genome 24 h after UVB irradiation. However, veliparib, spironolactone, and arsenic trioxide reduced the mutagenic potential of UVB, while resveratrol did not alter UVB-induced mutation formation. UVB-induced apoptosis was enhanced by spironolactone and arsenic-trioxide treatment, while veliparib caused significantly prolonged cell cycle arrest and increased autophagy. Spironolactone also enhanced the phosphorylation level of mammalian target of rapamycin (mTOR), while arsenic trioxide modified UVB-driven mitochondrial fission. Resveratrol induced only mild changes in the cellular UVB response. Our results show that chemically inhibited NER does not result in increased mutagenic effects. Furthermore, the UVB-induced mutagenic potential can be paradoxically mitigated by NER-inhibitor molecules. We identified molecular changes in the cellular UVB response after NER-inhibitor treatment, which may compensate for the mitigated DNA repair. Our findings show that metabolic cellular response pathways are essential to consider in evaluating the skin cancer risk–modifying effects of pharmacological compounds.

Funder

European Union and the European Regional Development Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3