Abstract
The role that thyroid hormone deficiency plays in depression and synaptic plasticity in adults has only begun to be elucidated. This paper analyzes the possible link between depression and hypothyroidism in cognitive function alterations, using Wistar–Kyoto (WKY—an animal model of depression) rats and control Wistar rats under standard and thyroid hormone deficiency conditions (propylthiouracil administration—PTU). A weakening of memory processes in the WKY rats is shown behaviorally, and in the reduction of long-term potentiation (LTP) in the dentate gyrus (DG) and CA1 hippocampal regions. PTU administration decreased LTP and increased basal excitatory transmission in the DG in Wistar rats. A decrease in short-term synaptic plasticity is shown by the paired-pulse ratio measurement, occurring during hypothyroidism in DG and CA1 in WKY rats. Differences between the strains may result from decreases in the p-CaMKII, p-AKT, and the level of acetylcholine, while in the case of the co-occurrence of depression and hypothyroidism, an increase in the p-ERK1-MAP seemed to be important. Obtained results show that thyroid hormones are less involved in the inhibition of glutamate release and/or excitability of the postsynaptic neurons in WKY rats, which may indicate a lower sensitivity of the hippocampus to the action of thyroid hormones in depression.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献