Thanatin: An Emerging Host Defense Antimicrobial Peptide with Multiple Modes of Action

Author:

Dash Rachita,Bhattacharjya Surajit

Abstract

Antimicrobial peptides (AMPs) possess great potential for combating drug-resistant bacteria. Thanatin is a pathogen-inducible single-disulfide-bond-containing β-hairpin AMP which was first isolated from the insect Podisus maculiventris. The 21-residue-long thanatin displays broad-spectrum activity against both Gram-negative and Gram-positive bacteria as well as against various species of fungi. Remarkably, thanatin was found to be highly potent in inhibiting the growth of bacteria and fungi at considerably low concentrations. Although thanatin was isolated around 25 years ago, only recently has there been a pronounced interest in understanding its mode of action and activity against drug-resistant bacteria. In this review, multiple modes of action of thanatin in killing bacteria and in vivo activity, therapeutic potential are discussed. This promising AMP requires further research for the development of novel molecules for the treatment of infections caused by drug resistant pathogens.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference75 articles.

1. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance (AMR), 2016. Government of the United Kingdom: Wellcome Trust U.Khttps://www.biomerieuxconnection.com/wp-content/uploads/2018/04/Tackling-Drug-Resistant-Infections-Globally_-Final-Report-and-Recommendations.pdf

2. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study

3. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)

4. Global antimicrobial resistance in Gram-negative pathogens and clinical need

5. Discovery of Next-Generation Antimicrobials through Bacterial Self-Screening of Surface-Displayed Peptide Libraries

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3