Two 20-Residue-Long Peptides Derived from Plasmodium vivax Merozoite Surface Protein 10 EGF-Like Domains Are Involved in Binding to Human Reticulocytes

Author:

Ricaurte-Contreras Laura AlejandraORCID,Lovera Andrea,Moreno-Pérez Darwin AndrésORCID,Bohórquez Michel DavidORCID,Suárez Carlos Fernando,Gutiérrez-Vásquez Elizabeth,Cuy-Chaparro LauraORCID,Garzón-Ospina Diego,Patarroyo Manuel AlfonsoORCID

Abstract

Plasmodium parasites’ invasion of their target cells is a complex, multi-step process involving many protein-protein interactions. Little is known about how complex the interaction with target cells is in Plasmodium vivax and few surface molecules related to reticulocytes’ adhesion have been described to date. Natural selection, functional and structural analysis were carried out on the previously described vaccine candidate P. vivax merozoite surface protein 10 (PvMSP10) for evaluating its role during initial contact with target cells. It has been shown here that the recombinant carboxyl terminal region (rPvMSP10-C) bound to adult human reticulocytes but not to normocytes, as validated by two different protein-cell interaction assays. Particularly interesting was the fact that two 20-residue-long regions (388DKEECRCRANYMPDDSVDYF407 and 415KDCSKENGNCDVNAECSIDK434) were able to inhibit rPvMSP10-C binding to reticulocytes and rosette formation using enriched target cells. These peptides were derived from PvMSP10 epidermal growth factor (EGF)-like domains (precisely, from a well-defined electrostatic zone) and consisted of regions having the potential of being B- or T-cell epitopes. These findings provide evidence, for the first time, about the fragments governing PvMSP10 binding to its target cells, thus highlighting the importance of studying them for inclusion in a P. vivax antimalarial vaccine.

Funder

Fundacion Instituto de Inmunología de Colombia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3