HGF and TSG-6 Released by Mesenchymal Stem Cells Attenuate Colon Radiation-Induced Fibrosis

Author:

Usunier Benoît,Brossard Clément,L’Homme Bruno,Linard Christine,Benderitter Marc,Milliat Fabien,Chapel AlainORCID

Abstract

Fibrosis is a leading cause of death in occidental states. The increasing number of patients with fibrosis requires innovative approaches. Despite the proven beneficial effects of mesenchymal stem cell (MSC) therapy on fibrosis, there is little evidence of their anti-fibrotic effects in colorectal fibrosis. The ability of MSCs to reduce radiation-induced colorectal fibrosis has been studied in vivo in Sprague–Dawley rats. After local radiation exposure, rats were injected with MSCs before an initiation of fibrosis. MSCs mediated a downregulation of fibrogenesis by a control of extra cellular matrix (ECM) turnover. For a better understanding of the mechanisms, we used an in vitro model of irradiated cocultured colorectal fibrosis in the presence of human MSCs. Pro-fibrotic cells in the colon are mainly intestinal fibroblasts and smooth muscle cells. Intestinal fibroblasts and smooth muscle cells were irradiated and cocultured in the presence of unirradiated MSCs. MSCs mediated a decrease in profibrotic gene expression and proteins secretion. Silencing hepatocyte growth factor (HGF) and tumor necrosis factor-stimulated gene 6 (TSG-6) in MSCs confirmed the complementary effects of these two genes. HGF and TSG-6 limited the progression of fibrosis by reducing activation of the smooth muscle cells and myofibroblast. To settle in vivo the contribution of HGF and TSG-6 in MSC-antifibrotic effects, rats were treated with MSCs silenced for HGF or TSG-6. HGF and TSG-6 silencing in transplanted MSCs resulted in a significant increase in ECM deposition in colon. These results emphasize the potential of MSCs to influence the pathophysiology of fibrosis-related diseases, which represent a challenging area for innovative treatments.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3