Pseurotin D Inhibits the Activation of Human Lymphocytes

Author:

Rubanova Daniela,Dadova Petra,Vasicek Ondrej,Kubala LukasORCID

Abstract

Background: Pseurotins, a family of secondary metabolites of different fungi characterized by an unusual spirocyclic furanone-lactam core, are suggested to have different biological activities including the modulation of immune response. Purpose: Complex characterization of the effects of pseurotin D on human lymphocyte activation in order to understand the potential of pseurotin to modulate immune response in humans. Methods: CD4+ and CD8+ T cells and CD19+ B cells isolated from human blood were activated by various activators simultaneously with pseurotin D treatment. The effects of pseurotin were tested on the basis of changes in cell viability, apoptosis, activation of signal transducers and activators of transcription (STAT) signaling pathways, production of tumor necrosis factor (TNF)-α by T cells, expression of activation markers CD69 and CD25 on T cells and Human Leukocyte Antigen–DR isotype (HLA-DR) on B cells, and the differentiation markers CD20, CD27, CD38, and immunoglobulin (Ig) D on B cells. Results: Pseurotin D significantly inhibited the activation of both CD4+ and CD8+ human T cells complemented by the inhibition of TNF-α production without significant acute toxic effects. The Pseurotin D-mediated inhibition of T-cell activation was accompanied by the induction of the apoptosis of T cells. This corresponded with the inhibited phosphorylation of STAT3 and STAT5. In human B cells, pseurotin D did not significantly inhibit their activation; however, it affected their differentiation. Conclusions: Our results advance the current mechanistic understanding of the pseurotin-induced inhibition of lymphocytes and suggest pseurotins as new attractive chemotypes for future research in the context of immune-modulatory drugs.

Funder

Grantová Agentura České Republiky

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3